

2nd MEDITERRANEAN WATER FORUM

Panel 2 « Nexus Water / Energy / Food Security »

Nexus Water / Energy / Food Security in irrigation sector

Victor Villegas Auditorium and Conference Centre, Murcia, Spain. November 25-27, 2014 Andrés del Campo García. President de:

- Federación Nacional de Comunidades de Regantes de España (FENACORE)
- Euromediterranean Irrigators Community (EIC)

Euromediterranean Irrigators Community (EIC)

EIC is an international association of water users associations and federations of irrigators from the following countries: Portugal (Fenareg), Francia, Italia, Alemania, Grecia, Turquía (Sulama), Egipto, Túnez, Marruecos y España (Fenacore)

MAIN OBJETIVES

**

 \checkmark

 \checkmark

- To represent the members and the European irrigation at the European Union and its Institutions
- To represent the members before International Organizations and Associations related to agriculture, water and irrigation.
- Exchange ideas, projects and experiences to improve institutional organization of irrigation in member countries.
- To favour the information exchange on irrigation

Evolution of Irrigation Systems in Spain.

IRRIGATION SYSTEM	Before 2000		2013 year	
	Hectares	%	Hectares	%
Flooding (gravity)	1.973.336	59	1.004.782	28
Sprinkling and others	802.712	24	828.202	23
Dripping	568.588	17	1.707.576	48
TOTAL	3.344.636	100	3.540.560	100

Source: PNR 2001 y encuesta sobre superficies y rendimientos de cultivo 2013

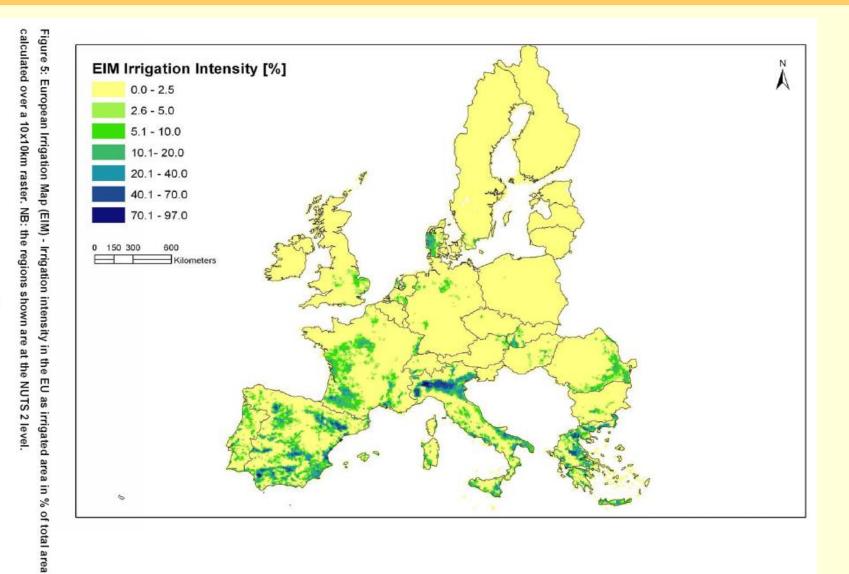
Irrigation systems in the Mediterran

	IRRIGATION		IRRIGATION SYSTEM (%)		
Country	Irrigable area	Irrigated Area	Flooding	Sprinkler	Dripping
Algeria		260.000		15%	
Egypt		3.422.178	88%	5%	7%
France	2.723.700	1.938.730			
Germany	600.000	560.000	0%	98%	2%
Greece	1.321.340	1.161.000			
Italy	3.892.202	2.471.379			
Libia		375.000			
Maroc		1.484.160	80%	10%	10%
Portugal	792.000	600.000	30%	38%	32%
Spain	3.700.000	3.473.473	28%	23%	48%
Turkey	25.853.674	4.300.000	80%	10%	10%

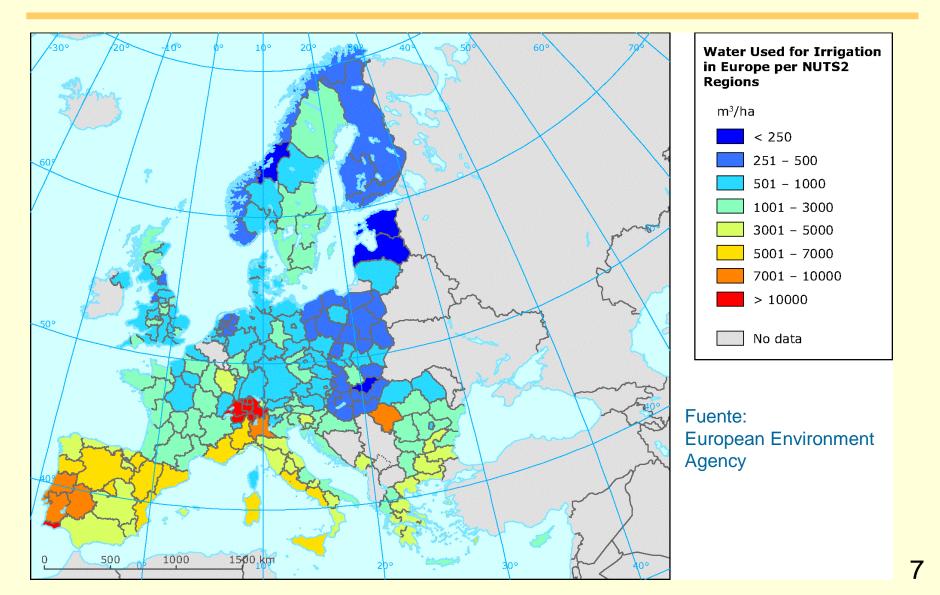
Source: FAO, German associations, Ministry of Water Resources Libia, Ministère des Ressources en Eau Algeria, FENAREG, <u>4</u> CIHEAM, MAGRAMA

Irrigation system in the world

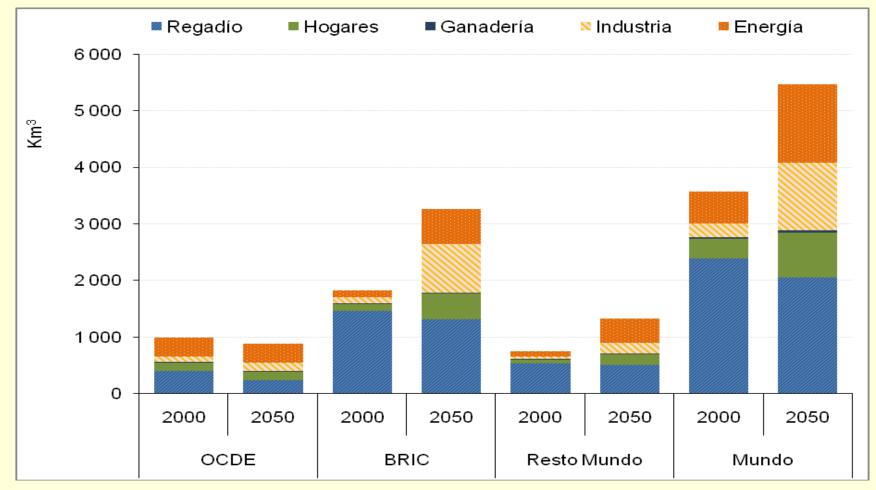
COUNTRY	TOTAL IRRIGATION HA*	DRIPPING IRRIGATION HA*	DRIPPING IRRIGATION %
World	331		< 6%
USA	22,9	1,7	7,4%
India	65	2	3,1%
China	63	0,756	1,2%
Israel	0,225	0,169	75,1%
Argentina	1,355	0,127	9,4%
México	6,5	0,143	2,3%
Spain	3,54	1,7	48%


* In Million ha

Source: FAO 2006,2007,2008,2009; ICID 2012; USDA 2005


Irrigation in Europe

Water irrigation use in Europe



Water uses in the world

Water demand regions in the world. Scenario 2000 - 2050

Source: The Environmental Outlook Baseline. OCDE

Water regulation in the World

- There are approximately **40,000 large dams**.
 - **Storage capacity and robustness of a country or region:**
- California: 850 days
- Spain (average): 65 days

How will influence the impact of climate change be?

- **Irrigation**: 20% of the cultivated area is irrigated. More than 300 million ha. and about 40% of the food supply in the world. It uses around 75% of available water.
- **Hydropower**: 20% is generated by water and is only 7% of the global potential.

Electrical energy for irrigation

- Electricity consumption in agricultural sector is a major cost of production and increasing nowadays
- In the Spanish case, irrigation energy represents about 2% of the total consumption and contracted power.
- Consumption, and consequently the energy costs are increasing as a result of irrigation modernization effort being made by the Irrigators Communities going from gravity irrigation system to irrigation pressure (dripping and sprinkling).
- Increased energy cost for <u>double way</u>:
 - a) greater power consumption (irrigation pressurized net)
 - b) Difficulty in adjusting to tariff system

Changes in water and energy use for irrigation

Year	Water used	Energy used
	(m³/ha)	(KWh/ha)
1950	8250	206
1970	8000	480
1980	7750	775
1990	7500	1088
2000	7000	1435
2007	6500	1560
Increase (%)	-21	657

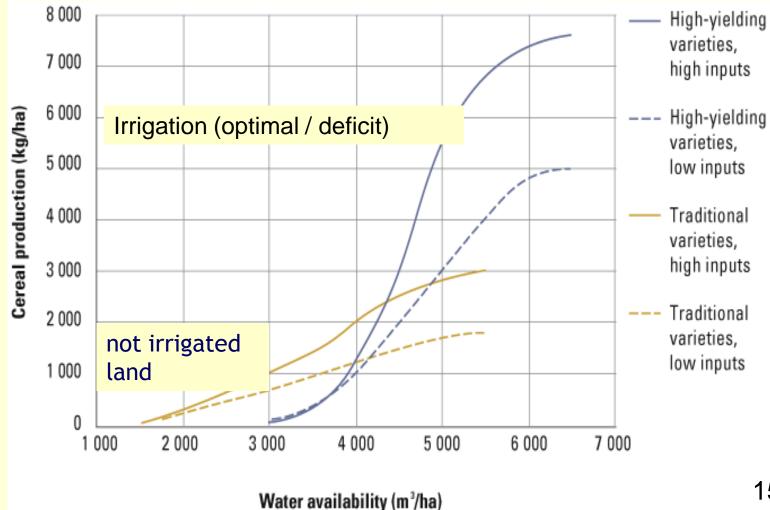
Source: Corominas (2009)

Challenges of sustainable irrigation

- 1. Feed a growing world population
- 2. Reducing rural poverty existing in the world
- 3. Reply to expected increase on the management of the availability of natural resources

Limitations:

- Less arable land and less fresh water per capita in the world
- New farming methods and practices based on emitting less CO2 and methane.


Increases of water demand can be satisfied in three ways:

- Raising agricultural productivity. 69%
- Increasing arable land. 19%
- Increasing cropping intensity (number of crops per year) .12%

Crop varieties, fertilizer and water availability, NRLW, FAO 2008

Irrigation contribution to food security

Drought effect in not irrigated lands

Control of soil moisture on well

IRRIGATION EFECTS (SOCIAL - ECONOMIC - ENVIRONMENTAL

- Addition of oxygen to the atmosphere
- Are sinks of atmospheric CO2
- Producer of raw materials Biofuels
- Reduction of erosion and desertification
- Fixing the population in the territory
- Irrigation as landscape element
- Positive effects on the induced economy by irrigation (GDP)
- Guaranteed of a minimum strategic supply
- Crop diversity and productivity of irrigated areas are higher than in the non-irrigated lands (1 ha S. R. = 5-6)

Conclusions for the sustainability of irrigation

- 1. Change the wrong picture about the activity of irrigation before the society. Dissemination of the many positive effects of irrigation.
- 2. Efficiency in energy consumption and the use of geometric gradients in irrigation: vital for sustainability.
- 3. The future modernization of our irrigation will aim efficiency in water and energy nexus, and the possibility of producing renewable energy for self-consumption.
- 4. The model of sustainable agriculture must be based on two fundamental principles:
 - Competitiveness or financial self-suffient
 - "Not aggressive to the environment"

multiple profitability: economic, social, environmental and territorial.

5. Irrigation and biotechnology will be the solution to overcome the challenges of food demand of a growing world population.

Mediterranean Water Forum

Thank you for your attention

Muchas gracias por su atención

- Euromediterranean Irrigators Community (EIC)
- Federación Nacional de Comunidades de Regantes de España (FENACORE) Paseo de la Habana 26, 2ª planta, oficina 2 E-28036 Madrid Telf: +34 91.563.63.18 E-mail: eic@fenacore.org/ fenacore@fenacore.org