Desalination in Malta

Ing David Sacco

History of Desalination in Malta

1966 - 4,500m³ per day MSF distiller commissioned

1982 - 20,000m³ per day Seawater RO commissioned at Ghar Lapsi

1985 - 15,000m³ per day Seawater RO commissioned at Tigne

1991 - 17,600m³ per day Seawater RO commissioned at Pembroke.

1881 - Commissioning of a Distiller for production of potable water following a drought.

1973 - 2,250m³ per day MSF plant commissioned in Gozo

1983 - 4500m³ per day Brackish RO commissioned at Marsa

1988 - 18,600m³ per day Seawater RO commissioned at Cirkewwa

1994 - Pembroke RO upgraded to 54,000m³ per day

Membrane development

Energy Recovery Devices

30

دان % Recovery 59

Plants' Upgrade

Single Stage Single Pass High Rejection Chloride < 100ppm 42% Recovery

Specific Power Trends

Specific Power – Trends

NB Specific power includes Energy utilised for well and booster pumps but excludes transfer pumps

Increase in RO capacity

Specific Power – Trends

NB Specific power includes Energy utilised for well and booster pumps but excludes transfer pumps

3.0 – 3.1 kwh/m³

Specific cost - €0.74/m³

Objectives of SCADA

- To operate more efficiently by managing related resources and activities as a process
- To manage interrelated processes as a system
- To base decisions on the analysis of factual data and information
- To Interface the various software packages to the SCADA system in order to automate plant operation and generate on line reporting for efficient and effective :
 - Maintenance management
 - Membrane management
 - -Energy Audits

SCADA Hardware Setup

Plant Automation

Autonomous operation of all plants through dedicated software developed by WSC engineers. Algorithms based on 30 years operational experience ensure :

- More effective operation
- Improved equipment reliability
- Reduced equipment downtime hence improved customer service
- Reduced energy consumption through online energy audits
- Reduced operational cost
- Better utilization of human resources
- Enhanced safety of employees

Successful Pre-treatment

Maintenance Management

 The new SCADA system continuously monitors the operational parameters, compares data with design values and initiate alarms on out of specs values

CONDITION BASED MAINTENANCE

 Requests for maintenance based on running hours is also generated by the SCADA

PERIODIC MAINTENANCE

Maintenance Strategies

Design out maintenance

- Detailed specifications based on past experience
- NDT on castings/FAT
- Thorough inspection before installation
- Cathodic protection

Submersible Pumps Corrosion Prevention

Maintenance Model

Research with Major Suppliers

Testing 16 inch membrane elements for Toray

Testing a new energy recovery system for KSB

Thank you for your attention

